

Deutsche Akkreditierungsstelle GmbH

Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV

Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

Accreditation

The Deutsche Akkreditierungsstelle GmbH attests that the calibration laboratory

STAHLWILLE Eduard Wille GmbH & Co. KG Lindenallee 27, 42349 Wuppertal, Germany

is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out calibrations in the following fields:

Mechanical quantities

- Torque

The accreditation certificate shall only apply in connection with the notice of accreditation of 22.11.2019 with the accreditation number D-K-15107-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 2 pages.

Registration number of the certificate: D-K-15107-01-00

Braunschweig, 22.11.2019

Dr. Heike Manke Head of Division Translation issued: 22.11.2019

Head of Division

The certificate together with its annex reflects the status at the time of the date of issue. The current status of the scope of accreditation can be found in the database of accredited bodies of Deutsche Akkreditierungsstelle GmbH. https://www.dakks.de/en/content/accredited-bodies-dakks

This document is a translation. The definitive version is the original German accreditation certificate. See notes overleaf.

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig

The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf.

No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.

The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009 (Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DAkkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.

The up-to-date state of membership can be retrieved from the following websites:

EA: www.european-accreditation.org

ILAC: www.ilac.org IAF: www.iaf.nu

Deutsche Akkreditierungsstelle GmbH

Annex to the Accreditation Certificate D-K-15107-01-00 according to DIN EN ISO/IEC 17025:2018

Valid from: 22.11.2019

Date of issue: 22.11.2019

Holder of certificate:

STAHLWILLE Eduard Wille GmbH & Co. KG Lindenallee 27, 42349 Wuppertal, Germany

Calibrations in the fields:

Mechanical quantities:

- Torque

Abbreviations used: see last page

Annex to the accreditation certificate D-K-15107-01-00

Permanent Laboratory

Calibration and Measurement Capabilities (CMC)

Measurement quantity / Calibration item	Range			Measurement conditions / procedure	Expanded uncertainty of measurement 1)	Remarks	
Torque Calibration devices for manually operated torque tools	0,2 N·m	to	10 N·m	DIN 51309: 2005	0.50 %	Calibration devices only for torque screwdriver	
	0,2 N·m	to	< 1 N·m	DKD-R 3-8: 2018	1.0 %	Calibration devices only for torque wrench	
	1 N·m	to	3 000 N·m	DKD-R 3-8: 2018	0.50 %		
Manually operated torque tools	1 N·m	to	< 2 N·m	DIN EN ISO 6789-2: 2017	1.0 %	Torque wrench	
	2 N·m	to	3 000 N·m	DKD-R 3-7: 2018	0.50 %		
	0,2 N·m	to	10 N·m	DIN EN ISO 6789-2: 2017	0.50 %	Torque screwdriver	

Abbreviations used:

CMC	Calibration and measurement capabilities	(Kalibrier- und	Messmöglichkeiten)

DIN Deutsches Institut für Normung e.V.

DKD-R Calibration Guide of Deutscher Kalibrierdienst (DKD), published by the Physikalisch-

Technischen Bundesanstalt

IEC International Electrotechnical Commission

Date of issue: 22.11.2019 Valid from: 22.11.2019

¹⁾ The expanded uncertainties according to EA-4/02 M:2013 are part of CMC and are the best measurement uncertainties within accreditation. They have a coverage probability of approximately 95 % and have a coverage factor of k = 2 unless stated otherwise. Uncertainties without unit are relative uncertainties referring to the measurement value unless stated otherwise.